Package: elasdics (via r-universe)

August 23, 2024

_		
Type Package		
Title Elastic Analysis of Sparse, Dense and Irregular Curves		
Version 1.1.3		
Author Lisa Steyer <lisa.steyer@hu-berlin.de></lisa.steyer@hu-berlin.de>		
Maintainer Lisa Steyer < lisa.steyer@hu-berlin.de>		
Description Provides functions to align curves and to compute mean curves based on the elastic distance defined in the square-root-velocity framework. For more details on this framework see Srivastava and Klassen (2016, <doi:10.1007 978-1-4939-4020-2="">). For more theoretical details on our methods and algorithms see Steyer et al. (2023, <doi:10.1111 biom.13706="">) and Steyer et al. (2023, <arxiv:2305.02075>).</arxiv:2305.02075></doi:10.1111></doi:10.1007>		
License GPL-3		
Encoding UTF-8		
Imports splines, stats, numDeriv		
RoxygenNote 7.3.1		
Suggests testthat, covr		
NeedsCompilation no		
Date/Publication 2024-01-25 13:50:02 UTC		
Repository https://steyerli.r-universe.dev		
RemoteUrl https://github.com/cran/elasdics		
RemoteRef HEAD		
RemoteSha df375a10246e8ca01ccc1a25cfdc897651cf0db1		
Contents		
align_curves		

2 align_curves

	elasdics	5
	find_optimal_t	6
	find_optimal_t_discrete	6
	find_optimal_t_discrete_closed	7
	fit_elastic_regression	7
	fit_mean	9
	fit_mean_closed	10
	get_evals	11
	get_srv_from_points	11
	optimise_one_coord_analytic	13
	optimise_one_coord_analytic_closed	13
	plot.aligned_curves	14
	plot.elastic_mean	14
	plot.elastic_reg_model	15
	predict.elastic_reg_model	16
	project_curve_on_closed	16
	srvf_to_curve	17
Index		18
muex		10
aliar	n_curves Align two curves measured at discrete points	
arigi	1_cui ves ———————————————————————————————————	

Description

Finds the optimal reparametrization of the second curve (stored in data_curve2) to the first one (stored in data_curve1) with respect to the elastic distance. Constructor function for class aligned_curves.

Usage

```
align_curves(data_curve1, data_curve2, closed = FALSE, eps = 0.01)
```

Arguments

data_curve1	data. frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
data_curve2	same as data_curve1
closed	TRUE if the curves should be treated as closed.
eps	convergence tolerance

center_curve 3

Value

Examples

```
#open curves
data_curve1 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
data_curve2 <- data.frame(x1 = c(0.1,0.7)*sin(1:6), x2 = cos(1:6))
aligned_curves <- align_curves(data_curve1, data_curve2)
plot(aligned_curves)

#different parametrization of the first curve
data_curve1$t <- 0:3/3
align_curves(data_curve1, data_curve2)

#closed curves
data_curve1 <- data.frame(x1 = sin(0:12/5), x2 = cos(0:12/5))
data_curve2 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
aligned_curves_closed <- align_curves(data_curve1, data_curve2, closed = TRUE)
plot(aligned_curves_closed, asp = 1)</pre>
```

center_curve

Centers curves for plotting

Description

Centers curves for plotting

Usage

```
center_curve(data_curve)
```

Arguments

```
data_curve curve data
```

Value

a data. frame with evaluations of the curve centered at the origin

Description

Computes a Fréchet mean for the curves stored in data_curves) with respect to the elastic distance. Constructor function for class elastic_mean.

Usage

```
compute_elastic_mean(
  data_curves,
  knots = seq(0, 1, len = 5),
  type = c("smooth", "polygon"),
  closed = FALSE,
  eps = 0.01,
  pen_factor = 100,
  max_iter = 50
)
```

Arguments

data_curves list of data. frames with observed points in each row. Each variable is one coor-

dinate direction. If there is a variable t, it is treated as the time parametrization,

not as an additional coordinate.

knots set of knots for the mean spline curve

type if "smooth" linear srv-splines are used which results in a differentiable mean

curve if "polygon" the mean will be piecewise linear.

closed TRUE if the curves should be treated as closed.

eps the algorithm stops if L2 norm of coefficients changes less

pen_factor penalty factor forcing the mean to be closed

max iter maximal number of iterations

Value

an object of class elastic_mean, which is a list with entries

type "smooth" if mean was modeled using linear srv-splines or "polygon" if constant

srv-splines are used

coefs spline coefficients

knots spline knots

data_curves list of data.frames with observed points in each row. First variable t gives

the initial parametrization, second variable t_optim the optimal parametrization

when the curve is aligned to the mean.

closed TRUE if the mean is supposed to be a closed curve.

elasdics 5

Examples

```
curve <- function(t){</pre>
  rbind(t*cos(13*t), t*sin(13*t))
set.seed(18)
data_curves <- lapply(1:4, function(i){</pre>
  m <- sample(10:15, 1)</pre>
  delta \leftarrow abs(rnorm(m, mean = 1, sd = 0.05))
  t <- cumsum(delta)/sum(delta)</pre>
  data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))),
              ncol = 2))
})
#compute elastic means
knots \leftarrow seq(0,1, length = 11)
smooth_elastic_mean <- compute_elastic_mean(data_curves, knots = knots)</pre>
plot(smooth_elastic_mean)
knots <- seq(0,1, length = 15)
polygon_elastic_mean <- compute_elastic_mean(data_curves, knots = knots, type = "poly")</pre>
lines(get_evals(polygon_elastic_mean), col = "blue", lwd = 2)
#compute closed smooth mean, takes a little longer
knots \leftarrow seq(0,1, length = 11)
closed_elastic_mean <- compute_elastic_mean(data_curves, knots = knots, closed = TRUE)</pre>
plot(closed_elastic_mean)
```

elasdics

elasdics: elastic analysis of sparse, dense and irregular curves.

Description

The elasdics package provides functions to align observed curves and to compute elastic means for collections of curves.

Main functions

Align two observed curves: align_curves

Compute a mean for a set of observed curves: compute_elastic_mean

Description

Finds optimal alignment for a discrete open srv curve to a smooth curve

Usage

```
find_optimal_t(srv_curve, s, q, initial_t = s, eps = 10 * .Machine$double.eps)
```

Arguments

srv_curve	srv transformation of the smooth curve, needs to be vectorized
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, without first value 0 and last value 1, optimal time points have the distance of the observation to the srv_curve as an attribute

```
find_optimal_t_discrete
```

Finds optimal alignment for discrete open curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
find_optimal_t_discrete(r, p, s, q, initial_t = s, eps = 10^-3)
```

Arguments

r	time points for p, first has to be 0, last has to be 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

```
find_optimal_t_discrete_closed
```

Finds optimal alignment for discrete closed curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
find_optimal_t_discrete_closed(r, p, s, q, initial_t, eps = 10^-3)
```

Arguments

r	time points for p, first is last - 1
p	square root velocity vectors, one less than time points in r
S	time points for q, first is last - 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, first is last -1

```
fit_elastic_regression
```

Compute a elastic mean for a collection of curves

Description

Computes a Fréchet mean for the curves stored in data_curves with respect to the elastic distance. Constructor function for class elastic_reg_model.

Usage

```
fit_elastic_regression(
  formula,
  data_curves,
  x_data,
  knots = seq(0, 1, 0.2),
  type = "smooth",
  closed = FALSE,
  max_iter = 10,
  eps = 0.001,
  pre_align = FALSE
)
```

Arguments

formula an object of class "formula" of the form data_curves ~ ...".

data_curves list of data. frames with observed points in each row. Each variable is one coor-

dinate direction. If there is a variable t, it is treated as the time parametrization,

not as an additional coordinate.

x_data a data. frame with covariates.

knots set of knots for the parameter curves of the regression model

type if "smooth" linear srv-splines are used which results in a differentiable mean

curve if "polygon" the mean will be piecewise linear.

closed TRUE if the curves should be treated as closed.

max_iter maximal number of iterations

eps the algorithm stops if L2 norm of coefficients changes less

pre_align TRUE if curves should be pre aligned to the mean

Value

an object of class elastic_reg_model, which is a list with entries

type "smooth" if linear srv-splines or "polygon" if constant srv-splines were used

coefs spline coefficients

knots spline knots

data_curves list of data.frames with observed points in each row. First variable t gives

the initial parametrization, second variable t_optim the optimal parametrization

when the curve is aligned to the model prediction.

closed TRUE if the regression model fitted closed curves.

Examples

```
curve <- function(x_1, x_2, t){
  rbind(2*t*cos(6*t) - x_1*t , x_2*t*sin(6*t))
}
set.seed(18)</pre>
```

fit_mean 9

fit_mean

Fitting function for open curves

Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

```
fit_mean(srv_data_curves, knots, max_iter, type, eps)
```

Arguments

srv_data_curves

list of data. frames with srv vectors in each row. Usually a result of a call to

get_srv_from_points

knots set of knots for the mean spline curve

max_iter maximal number of iterations

type if "smooth" linear srv-splines are used which results in a differentiable mean

curve if "polygon" the mean will be piecewise linear.

eps the algorithm stops if L2 norm of coefficients changes less

Value

a list with entries

type "smooth" or "polygon"

coefs coefs srv spline coefficients of the estimated mean

knots spline knots

t_optims optimal parametrization

10 fit_mean_closed

fit_mean_closed	Fitting function for open curves	

Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

```
fit_mean_closed(srv_data_curves, knots, max_iter, type, eps, pen_factor)
```

Arguments

srv_data_curves

list of data. frames with srv vectors in each row. Usually a result of a call to

get_srv_from_points

knots set of knots for the mean spline curve

max_iter maximal number of iterations

type if "smooth" linear srv-splines are used which results in a differentiable mean

curve

eps the algorithm stops if L2 norm of coefficients changes less

pen_factor penalty factor forcing the mean to be closed if "polygon" the mean will be piece-

wise linear.

Value

a list with entries

type "smooth" or "polygon"

coefs coefs srv spline coefficients of the estimated mean

knots spline knots

t_optims optimal parametrization

shift_idxs index of the starting point of the closed curve after alignment

get_evals 11

get_evals

Evaluate a curve on a grid

Description

Evaluate a curve on a grid

Usage

```
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'data.frame'
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'elastic_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, ...)
```

Arguments

curve a one parameter function which is to be evaluated on a grid

t_grid the curve is evaluated at the values in t_grid, first value needs to be 0, last value needs to be 1. If t_grid = NULL, a default regular grid with grid length 0.01 is chosen

... other arguments

TRUE if curves shall be centered

Value

a data. frame with evaluations of the curve at the values in t_grid in its rows.

Examples

```
curve <- function(t){c(t*sin(10*t), t*cos(10*t))}
plot(get_evals(curve), type = "b")</pre>
```

get_srv_from_points

Helper functions for curve data measured at discrete points

Description

Compute the square-root-velocity transformation or the parametrization with respect to arc length for a curve observed at discrete points.

12 get_srv_from_points

Usage

```
get_srv_from_points(data_curve)
get_points_from_srv(srv_data)
get_arc_length_param(data_curve)
```

Arguments

data_curve A data_frame with observed points on a curve. Each row is one point, each variable one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.

srv_data A data.frame with first column t corresponding to the parametrization and

square-root-velocity vectors in the remaining columns.

Value

get_srv_from_points returns a data. frame with first column t corresponding to the parametrization and square-root-velocity vectors in the remaining columns. If no parametrization is given, the curve will be parametrized with respect to arc length. This parametrization will be computed by a call to get_arc_length_param as well.

Functions

- get_srv_from_points(): Compute square-root-velocity transformation for curve data measured at discrete points. The inverse transformation can be computed with get_points_from_s
- get_points_from_srv(): The inverse transformation to get_srv_from_points. Transforms square-root-velocity data to points representing a curve (with no parametrization).
- get_arc_length_param(): Compute arc length parametrization.

Examples

```
data_curve1 <- data.frame(x1 = 1:6*sin(1:6), x2 = cos(1:6))
get_arc_length_param(data_curve1) #same parametrization as in
get_srv_from_points(data_curve1)

data_curve2 <- data.frame(t = seq(0,1, length = 6), data_curve1)
plot(data_curve2[,2:3], type = "1", xlim = c(-6, 2), ylim = c(-2, 1))
srv_data <- get_srv_from_points(data_curve2)
#back transformed curve starts at (0,0)
lines(get_points_from_srv(srv_data), col = "red")</pre>
```

```
optimise_one_coord_analytic
```

Does optimization in one parameter direction

Description

Does optimization in one parameter direction

Usage

```
optimise_one_coord_analytic(t, i, r, p, s, q)
```

Arguments

t	current time points, first has to be 0, last has to be 1
i	index of t that should be updated
r	time points for p, first has to be 0, last has to be 1
р	square root velocity vectors, one less than time points in r
s	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s

Value

optimal time points for q with respect to optimization only in the i-th coordinate direction

```
optimise_one_coord_analytic_closed
```

Does optimization in one parameter direction

Description

Does optimization in one parameter direction

Usage

```
optimise_one_coord_analytic_closed(t, i, r, p, s, q)
```

Arguments

t	current time points, first has to be 0, last has to be 1
i	index of t that should be updated
r	time points for p, first is last - 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first is last - 1
q	square root velocity vectors, one less than time points in s

plot.elastic_mean

Value

optimal time points for q with respect to optimization only in the i-th coordinate direction

```
plot.aligned_curves
Plot method for aligned curves
```

Description

Plots objects of class aligned_curves. Points of same color correspond after the second curve is optimally aligned to the first curve.

Usage

```
## S3 method for class 'aligned_curves'
plot(x, points_col = rainbow, ...)
```

Arguments

```
    x object of class aligned_curves, usually a result of a call to align_curves
    points_col which color palette is used for points on the curves, default is rainbow, see rainbow for further options.
    ... further plotting parameters.
```

Value

No value

See Also

For examples see documentation of align_curves.

```
plot.elastic_mean
```

Plot method for planar elastic mean curves

Description

Plots objects of class elastic_mean.

Usage

```
## S3 method for class 'elastic_mean'
plot(x, asp = 1, col = "red", ...)
```

plot.elastic_reg_model 15

Arguments

Х	object of class elastic_mean, usually a result of a call to compute_elastic_mean
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the mean curve.
	further plotting parameters.

Value

No value

See Also

For examples see documentation of compute_elastic_mean.

```
plot.elastic_reg_model
```

Plot method for planar elastic regression models

Description

Plots objects of class elastic_reg_model.

Usage

```
## S3 method for class 'elastic_reg_model'
plot(x, asp = 1, col = "red", ...)
```

Arguments

Χ	object of class elastic_reg_model, usually a result of a call to fit_elastic_regression
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the predicted curves.
	further plotting parameters.

Value

No value

See Also

For examples see documentation of $fit_elastic_regression$.

```
predict.elastic_reg_model
```

Predict method for elastic regression models

Description

predicted curves for elastic regression model objects.

Usage

```
## S3 method for class 'elastic_reg_model'
predict(object, newdata = NULL, t_grid = seq(0, 1, 0.01), ...)
```

Arguments

object object of class elastic_reg_model, usually a result of a call to fit_elastic_regression

newdata an optional data. frame in which to look for variables with which to predict. If
not given, the fitted values are used.

t_grid grid on which the predicted curves are evaluated.

... further arguments passed to or from other methods.

Value

a list of data. frames with predicted curves

See Also

For examples see documentation of fit_elastic_regression.

```
project_curve_on_closed
```

Close open curve via projection on derivative level.

Description

Close open curve via projection on derivative level.

Usage

```
project_curve_on_closed(data_curve)
```

Arguments

data_curve data.frame with values of the curve.

srvf_to_curve 17

Value

a data. frame with closed curve.

srvf_to_curve

Re-transform srv curve back to curve

Description

Re-transform srv curve back to curve

Usage

```
srvf_to_curve(t, srv_curve)
```

Arguments

t time points at which the resulting curve shall be evaluated.

srv_curve srv curve as a function of one parameter, needs to be vectorized.

Value

a matrix with curve evaluations at time points t in its columns, rows correspond to coordinate directions

Index

```
align_curves, 2, 5, 14
center_curve, 3
compute_elastic_mean, 4, 5, 9, 10, 15
elasdics, 5
find_optimal_t, 6
{\tt find\_optimal\_t\_discrete}, {\tt 6}
find_optimal_t_discrete_closed, 7
fit_elastic_regression, 7, 15, 16
fit_mean, 9
fit_mean_closed, 10
get_arc_length_param
         (get_srv_from_points), 11
get\_evals, 11
get_points_from_srv
        (get_srv_from_points), 11
get_srv_from_points, 9, 10, 11
{\tt optimise\_one\_coord\_analytic}, \\ 13
{\tt optimise\_one\_coord\_analytic\_closed,}\ 13
plot.aligned_curves, 14
plot.elastic_mean, 14
plot.elastic_reg_model, 15
plot.window, 15
predict.elastic_reg_model, 16
project_curve_on_closed, 16
rainbow, 14
srvf_to_curve, 17
```